X-ray Time Delay Integration (TDI) camera

XTI12848 TDI Series

Time Delay Integration (TDI) is a special image acquisition method that is used for in-line inspection application that requires high-speed, high sensitivity and high resolution. XTI12848 TDI camera, when equipped with appropriate shielding, is specifically designed to be used in high-energy x-ray, gamma-ray, and betatron imaging applications. An off-axis, FOP (Fiber Optic Plate) design protects the CCD sensor from direct harmful radiation. Users can select the scintillator for specific applications. Pixels are 48 µm x 48 µm. Binning modes 2×2, 4×4, 8×8, etc. allow for imaging at lower resolutions.

Key Features

- High speed, resolution & sensitivity
- Imaging with off-axis, fiber-optic design
- User-select X-ray scintillating material GOS, CsI(Tl), CdWO₄, etc.
- A selection of lengths:
 - 4 inches (2048 pixels)
 - 6 inches (3072 pixels)
 - 9 inches (4608 pixels)
 - 12 inches (6144 pixels)
- Highly extended lifetimes
- Camera Link (Base configuration) and GigE Vision interfaces
- 16-bit digitization and data output
- 100-240-V, 50-60-Hz power
- Software development kit (SDK) with application programming interface (API)

Applications

- In-line Non-Destructive Testing (NDT)
- High-energy x-ray, gamma-ray, betatron and neutron imaging
In the operation of both traditional Linear Diode Array (LDA) and TDI detectors, objects must be moving relative to the detectors. In an LDA, a single line of diodes collect signal. Once the object has past the diode line, no more signal is collected. A TDI device has multiple diode lines and the signal for each line can be passed to the next line. As the object passes over each line, each line collects signal and then passes the signal to the following line. After the object passes the final line, the full integrated signal is read out. When the TDI device is synchronized to the moving object, an image with higher resolution at lower light level is achieved. As a result signal-to-noise ratio in TDI camera is much higher than that in a line-scan camera.
Radiographs of SD card using traditional LDA and XTI12848 TDI

Traditional LDA (50um)

Traditional LDA zoomed-in view

TDI (48 um)

TDI zoomed-in view (S/N improved 9X)
TDI camera spatial resolution with 3.4× geometric magnification

TDI camera MTF at 10 lp/mm (with 3.4× geometric magnification)
Specification

<table>
<thead>
<tr>
<th>Model</th>
<th>XTI12848-004</th>
<th>XTI12848-006</th>
<th>XTI12848-009</th>
<th>XTI12848-012</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDI stages and number of pixels</td>
<td>2048 × 128</td>
<td>3072 × 128</td>
<td>4608 × 128</td>
<td>6144 × 128</td>
</tr>
<tr>
<td>Pixel size</td>
<td>48 µm × 48 µm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-ray sensitive area</td>
<td>98 × 6.1 mm²</td>
<td>147 × 6.1 mm²</td>
<td>221 × 6.1 mm²</td>
<td>295 × 6.1 mm²</td>
</tr>
<tr>
<td>Maximum X-ray energy</td>
<td></td>
<td></td>
<td>15 MeV‡</td>
<td></td>
</tr>
<tr>
<td>CCD pixel clock</td>
<td></td>
<td></td>
<td>3 MHz</td>
<td></td>
</tr>
<tr>
<td>TDI line rate</td>
<td></td>
<td></td>
<td>Up to 10 KHz§</td>
<td></td>
</tr>
<tr>
<td>A/D converter</td>
<td></td>
<td></td>
<td>16 bit</td>
<td></td>
</tr>
<tr>
<td>Camera Link data rate</td>
<td></td>
<td></td>
<td>48 to 84 MHz¶</td>
<td></td>
</tr>
<tr>
<td>Power requirement</td>
<td></td>
<td></td>
<td>100–240 V, 50–60 Hz</td>
<td></td>
</tr>
<tr>
<td>Power consumption</td>
<td>25 W</td>
<td>38 W</td>
<td>63 W</td>
<td>75 W</td>
</tr>
<tr>
<td>Readout direction</td>
<td></td>
<td></td>
<td>Bidirectional</td>
<td></td>
</tr>
<tr>
<td>Selectable number of stages</td>
<td></td>
<td></td>
<td>32, 64, 96, 128</td>
<td></td>
</tr>
</tbody>
</table>

2. Line rate may be limited by scintillator choice or by bandwidth considerations of interface. 10 KHz provided with CsI and Camera Link interface.
3. Camera Link data rate depends on exact camera configuration.
Information furnished by X-Scan Imaging is believed to be accurate and reliable. However, no responsibility is assumed by X-Scan Imaging Corporation for its use. Users are responsible for their products and applications using X-Scan Imaging components. To minimize the risks associated with users’ products and applications, users should provide adequate design and operating safeguards. No responsibility is assumed by X-Scan Imaging Corporation for any infringements of patents or other rights of third parties that may result from the use of the information. No license is granted by implication or otherwise under any patent or patent rights of X-Scan Imaging Corporation.

© 2014 X-Scan Imaging Corp.

107 Bonaventura Dr., San Jose, CA 95134, U.S.A.
Tel: +1 408 432 9888
Fax: +1 408 432 9889
www.x-scanimaging.com